STAD

БАЛАНСИРОВОЧНЫЙ КЛАПАН

TA >

Поддержание давления > Балансировка и регулирование > Термостатика

ENGINEERING ADVANTAGE

Балансировочный клапан STAD обеспечивает точность гидравлического режима и может применяться в самых различных областях. Он идеально подходит для использования во вторичном контуре систем тепло- и холодоснабжения, а также в системах водоснабжения.

РУКОЯТКА

Рукоятка с возможностью считывания показаний обеспечивает точность и простоту балансировки. Запорная функция позволяет облегчить техническое обслуживание.

> САМОУПЛОТНЯЮЩИЕСЯ ИЗМЕРИТЕЛЬНЫЕ ШТУЦЕРЫ

Гарантируют простоту и точность балансировки.

▶ СПЛАВ AMETAL®

Устойчивый к потере цинка сплав, обеспечивающий долговременную эксплуатацию клапана и уменьшающий риск утечки.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Область применения:

Системы тепло- и холодоснабжения Системы водоснабжения

Функция:

Балансировка
Предварительная настройка
Измерение
Закрытие
Дренаж (выборочно)

Диапазон размеров:

DN 10-50

Номинальное давление:

PN 20

Температура:

Макс. рабочая температура: 120°C.

По вопросу более высоких температур (макс. 150°C) обращайтесь в ближайшее представительство по продажам.

ВНИМАНИЕ! DN 25-50 с гладкими патрубками - макс. рабочая температура 120°C.

Мин. рабочая температура: -20°C

Материал:

Клапаны выполнены из сплава AMETAL®

Уплотнение седла: Стержень с прокладкой из каучука

FPDM

Уплотнение штока: Прокладка из каучука EPDM

Рукоятка: Полиамид и ТРЕ

Гладкие патрубки: Ниппель: AMETAL®

Уплотнение (DN 25-50): Прокладка из каучука EPDM

 $AMETAL^{\circ}$ - это разработанный компанией TA медный сплав, устойчивый к потере цинка.

Маркировка:

Корпус: ТА, PN 20/150, DN и размер в дюймах.

Рукоятка: Тип клапана и DN.

> ИЗМЕРИТЕЛЬНЫЕ ШТУЦЕРЫ

Измерительные штуцеры выполнены самоуплотняющимися. Открутите защитный колпачок и вставьте зонд через уплотнение.

ДРЕНАЖ

Клапаны с дренажным устройством для подсоединения к шлангу G1/2 и G3/4.

Клапаны без дренажа снабжены защитным колпачком. Защитный колпачок можно временно удалить и установить дренажное устройство, поставляемое в качестве дополнительного оборудования.

▶ ПОДБОР

Если известны Δp и требуемый расход, для расчета Kv пользуйтесь данными формулами или диаграммой.

$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}}$$
 q l/h, Δp kPa

$$Kv = 36 \frac{q}{\sqrt{\Delta p}}$$
 q l/s, Δp kPa

ЗНАЧЕНИЯ Ку

Обороты	DN 10/09	DN 15/14	DN 20	DN 25	DN 32	DN 40	DN 50
0.5	_	0.127	0.511	0.60	1.14	1.75	2.56
1	0.090	0.212	0.757	1.03	1.90	3.30	4.20
1.5	0.137	0.314	1.19	2.10	3.10	4.60	7.20
2	0.260	0.571	1.90	3.62	4.66	6.10	11.7
2.5	0.480	0.877	2.80	5.30	7.10	8.80	16.2
3	0.826	1.38	3.87	6.90	9.50	12.6	21.5
3.5	1.26	1.98	4.75	8.00	11.8	16.0	26.5
4	1.47	2.52	5.70	8.70	14.2	19.2	33.0

> точность измерения

Нулевое положение ручки откалибровано и не подлежит изменению

Нулевое положение ручки откалибровано и не подлежит изменению.

Отклонение расхода при различных величинах настройки

Кривая (Рис. 4) справедлива для клапанов с обычными патрубками (Рис. 5). Избегайте установки клапанов в непосредственной близости от насосов и запорной арматуры.

Клапан может быть установлен против направления потока. Для такого направления действительны те же характеристики, однако погрешность может быть больше (максимум на 5%).

Рис. 4

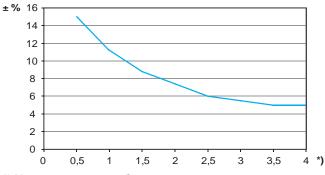
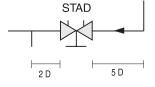
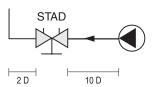




Рис. 5

^{*)} Настройка, число оборотов.

> ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ

Расчеты расхода справедливы для воды (+20°С). Для других жидкостей с вязкостью, приблизительно такой же как у воды (≤20 cSt = 3°E=100S.U.), следует лишь ввести поправочные коэффициенты для соответствующей плотности. Однако, при низких температурах вязкость увеличивается, и в клапанах может возникнуть ламинарное течение. Это вызывает отклонение в измерениях расхода, опасность которого увеличивается при применении небольших клапанов, малых величинах настроек и низкого дифференциального давления. Корректировка этого отклонения может быть существлена при помощи программного обеспечения ТА "Select" либо непосредственно в ТА-SCOPE.

) НАСТРОЙКА

Настройка клапана на требуемую величину перепада давления, например, соответствующую 2,3 оборотам на графике, осуществляется следующим образом:

- 1. Полностью закройте клапан (Рис.1).
- 2. Откройте клапан на 2.3 оборота (Рис.2).
- 3. С помощью 3 мм регулировочного ключа поверните внутренний шток по часовой стрелке до конца.
- 4. Теперь клапан настроен.

Для проверки настройки: Закройте клапан, индикатор показывает 0.0. Откройте клапан до упора. Индикатор покажет величину настройки, в данном случае 2.3 (Рис. 2).

Диаграммы, показывающие перепад давления для каждого размера клапана при различных настройках и диапазонах расхода, помогут выбрать правильный размер клапана и значение настройки (перепад давления). Четыре оборота открывают клапан полностью (Рис. 3). Дальнейшее его открытие не увеличивает расход.

Рис. 1 Клапан закрыт

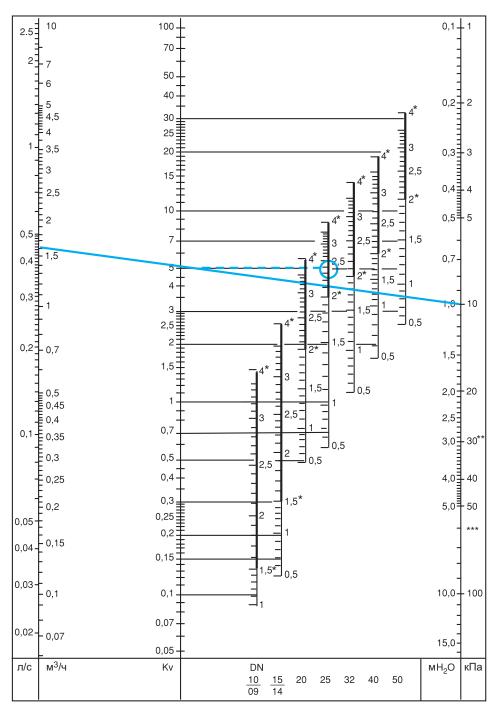
Рис. 2 Клапан настроен - значение 2.3

Рис. 3 Клапан полностью открыт

ДИАГРАММА (ПРИМЕР)

Требуется

Найти величину настройки для DN 25 при заданном расходе 1,6 м³/ч и перепаде давления в 10 кПа.


Решение:

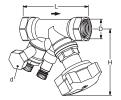
Соединяем прямой точки 1,6 м 3 /ч и 10 кПа. Получим Kv=5. Теперь проведем горизонтальную линию через Kv=5. Ее пересечение со шкалой настройки для DN 25 дает 2,35 оборотов.

ВНИМАНИЕ:

Если величины расхода выходят за рамки шкалы диаграммы, то считывание выполняют следующим образом: Как в примере (выше), имеем 10 кПа, Kv=5 и расход 1.6 м³/ч. При 10 кПа и Kv=0,5 расход будет 0,16 м³/ч, а при Kv=50 получим расход 16 м³/ч. Это значит, что для данного перепада давления величины расхода и Kv находим простым перемещением запятой.

> ДИАГРАММА

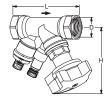
^{*)} Рекомендуемая область


^{**) 25} db (A)

^{**) 35} db (A)

) Описание

Внутренняя резьба


Резьба в соответствии с ISO 228. Длина резьбы в соответствии с ISO 7/1. С дренажем

DN	D	L	Н	Kvs	Кг	№ изделия
d = G1/2						
10/09	G3/8	83	100	1,47	0,65	52 151-209*
15/14	G1/2	90	100	2,52	0,68	52 151-214*
20	G3/4	97	100	5,70	0,77	52 151-220*
25	G1	110	105	8,70	0,93	52 151-225
32	G1 1/4	124	110	14,2	1,3	52 151-232
40	G1 1/2	130	120	19,2	1,6	52 151-240
50	G2	155	120	33,0	2,4	52 151-250
d = G3/4						
10/09	G3/8	83	100	1,47	0,65	52 151-609*
15/14	G1/2	90	100	2,52	0,68	52 151-614*
20	G3/4	97	100	5,70	0,77	52 151-620*
25	G1	110	105	8,70	0,93	52 151-625
32	G1 1/4	124	110	14,2	1,3	52 151-632
40	G1 1/2	130	120	19,2	1,6	52 151-640
50	G2	155	120	33,0	2,4	52 151-650

Внутренняя резьба

Резьба в соответствии с ISO 228. Длина резьбы в соответствии с ISO 7/1. Без дренажа (может быть установлен в процессе эксплуатации).

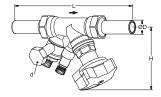
					.,	
DN	D	L	Н	Kvs	Кг	№ изделия
10/09	G3/8	83	100	1,47	0,58	52 151-009*
15/14	G1/2	90	100	2,52	0,62	52 151-014*
20	G3/4	97	100	5,70	0,72	52 151-020*
25	G1	110	105	8,70	0,88	52 151-025
32	G1 1/4	124	110	14,2	1,2	52 151-032
40	G1 1/2	130	120	19,2	1,4	52 151-040
50	G2	155	120	33,0	2,3	52 151-050

Внутренняя резьба

Резьба соответствует ISO 7 (≈BS 21)

Без дренажа (может быть установлен в процессе эксплуатации)

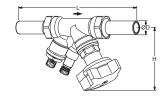
DN	D	L	Н	Kvs	Кг	№ изделия
15/14	Rc1/2	90	100	2,52	0,62	52 251-014
20	Rc3/4	97	100	5,70	0,72	52 251-020
25	Rc1	110	105	8,70	0,88	52 251-025
32	Rc1 1/4	124	110	14,2	1,2	52 251-032
40	Rc1 1/2	130	120	19,2	1,4	52 251-040
50	Rc2	155	120	33,0	2,3	52 251-050


 $[\]rightarrow$ = Направление потока

 $Kvs = M^3/4$ ас при перепаде давления в 1 бар и полностью открытом клапане.

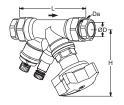
^{*)} Может быть присоединен к гладким трубам при помощи компрессионного соединения типа КОМВІ. Смотрите каталог КОМВІ.

Гладкие патрубки


С дренажем

DN	D	L	Н	Kvs	Кг	№ изделия
d = G1/2						
10/09	12	141	100	1,47	0,71	52 451-209
15/14	15	154	100	2,52	0,78	52 451-214
20	22	179	100	5,70	0,93	52 451-220
25	28	208	105	8,70	1,2	52 451-225
32	35	233	110	14,2	1,7	52 451-232
40	42	260	120	19,2	2,1	52 451-240
50	54	305	120	33,0	3,2	52 451-250
d = G3/4						
10/09	12	141	100	1,47	0,71	52 451-609
15/14	15	154	100	2,52	0,78	52 451-614
20	22	179	100	5,70	0,93	52 451-620
25	28	208	105	8,70	1,2	52 451-625
32	35	233	110	14,2	1,7	52 451-632
40	42	260	120	19,2	2,1	52 451-640
50	54	305	120	33,0	3,2	52 451-650

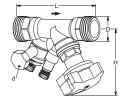
Гладкие патрубки


Без дренажа (может быть установлен в процессе эксплуатации)

DN	D	L	Н	Kvs	Кг	№ изделия
10/00	40	4.44	400	4 47	0.04	FO 4F4 000
10/09	12	141	100	1,47	0,64	52 451-009
15/14	15	154	100	2,52	0,72	52 451-014
20	22	179	100	5,70	0,88	52 451-020
25	28	208	105	8,70	1,1	52 451-025
32	35	233	110	14,2	1,6	52 451-032
40	42	260	120	19,2	1,9	52 451-040
50	54	305	120	33,0	3,1	52 451-050

С компрессионными соединениями типа КОМВІ (не вмонтированы)

Без дренажа (может быть установлен в процессе эксплуатации)

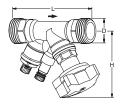

DN	Da	D	L	Н	Kvs	Кг	№ изделия
15/14	G1/2	12 mm x 2 / 15 mm x 2	90	100	2,52	0,76	52 151-314
20	G3/4	18 mm x 2 / 22 mm x 2	97	100	5,70	0,96	52 151-320

Kvs = M^3 /час при перепаде давления в 1 бар и полностью открытом клапане.

 $[\]rightarrow$ = Направление потока

Наружная резьба (STADA)

Длина резьбы в соответствии с DIN 3546 С дренажем



DN	D	L	н	Kvs	Кг	№ изделия
d = G1/2						
10/09	G1/2	105	100	1,47	0,70	52 152-209
15/14	G3/4	114	100	2,52	0,73	52 152-214
20	G1	125	100	5,70	0,88	52 152-220
25	G1 1/4	142	105	8,70	1,2	52 152-225
32	G1 1/2	160	110	14,2	1,6	52 152-232
40	G2	170	120	19,2	2,2	52 152-240
50	G2 1/2	200	120	33,0	3,3	52 152-250
d = G3/4						
10/09	G1/2	105	100	1,47	0,70	52 152-609
15/14	G3/4	114	100	2,52	0,73	52 152-614
20	G1	125	100	5,70	0,88	52 152-620
25	G1 1/4	142	105	8,70	1,2	52 152-625
32	G1 1/2	160	110	14,2	1,6	52 152-632
40	G2	170	120	19,2	2,2	52 152-640
50	G2 1/2	200	120	33,0	3,3	52 152-650

Наружная резьба (STADA)

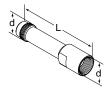
Длина резьбы в соответствии с DIN 3546

Без дренажа (может быть установлен в процессе эксплуатации)

DN	D	L	Н	Kvs	Кг	№ изделия
10/09	G1/2	105	100	1,47	0,61	52 152-009
15/14	G3/4	114	100	2,52	0,66	52 152-014
20	G1	125	100	5,70	0,81	52 152-020
25	G1 1/4	142	105	8,70	1,1	52 152-025
32	G1 1/2	160	110	14,2	1,5	52 152-032
40	G2	170	120	19,2	2,1	52 152-040
50	G2 1/2	200	120	33,0	3,2	52 152-050

 $[\]rightarrow$ = Направление потока

 $Kvs = M^{3}/vac$ при перепаде давления в 1 бар и полностью открытом клапане.


> АКСЕССУАРЫ

Измерительные штуцеры

Макс. 120°С (кратковременно 150°С)

L	№ изделия
44	52 179-014
103	52 179-015

Удлинитель для измерительного штуцера M14x1

Удобен при применении изоляции

d	L	№ изделия
M14x1	71	52 179-016

Измерительный штуцер

Удлинители 60 мм (не для 52 179-000/-601) Может быть установлен без дренажа системы

Nº	изделия
52	179-006

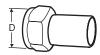
Измерительный штуцер

Для старых моделей STAD и STAF Макс. 150°C

L	№ изделия
30	52 179-000
90	52 179-601

Сварное соединение

Макс. 120°С


DN клапана	D	DN трубы	№ изделия
10	G1/2	10	52 009-010
15	G3/4	15	52 009-015
20	G1	20	52 009-020
25	G1 1/4	25	52 009-025
32	G1 1/2	32	52 009-032
40	G2	40	52 009-040
50	G2 1/2	50	52 009-050

Соединение под пайку

Макс. 120°C

DN клапана	D Ø трубы		№ изделия	
10	G1/2	10	52 009-510	
10	G1/2	12	52 009-512	
15	G3/4	15	52 009-515	
15	G3/4	16	52 009-516	
20	G1	18	52 009-518	
20	G1	22	52 009-522	
25	G1 1/4	28	52 009-528	
32	G1 1/2	35	52 009-535	
40	G2	42	52 009-542	
50	G2 1/2	54	52 009-554	

Соединение с гладким концом

Для соединения с пресс-муфтой

Макс. 120°С

DN клапана	D	Ø трубы	№ изделия	
10	G1/2	12	52 009-312	
15	G3/4	15	52 009-315	
20	G1	18	52 009-318	
20	G1	22	52 009-322	
25	G1 1/4	28	52 009-328	
32	G1 1/2	35	52 009-335	
40	G2	42	52 009-342	
50	G2 1/2	54	52 009-354	

Компрессионное соединение

Макс. 100 °C Используйте опорны

Используйте опорные втулки. Дополнительную информацию смотрите в каталоге на FPL соединение.

DN клапана	D	Ø трубы	№ изделия
10	G1/2	8	53 319-208
10	G1/2	10	53 319-210
10	G1/2	12	53 319-212
10	G1/2	15	53 319-215
10	G1/2	16	53 319-216
15	G3/4	15	53 319-615
15	G3/4	18	53 319-618
15	G3/4	22	53 319-622
20	G1	28	53 319-928

Ручка

В сборе

№ изделия

52 186-003

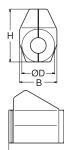
Табличка с данными

Прилагается к каждому клапану при поставке

№ изделия

52 161-990

Регулировочный ключ


3 mm Предварительная настройка 52 187-103 5 mm Дренаж 52 187-105

Дренажный комплект

Может быть установлен в процессе эксплуатации

d	№ изделия
G1/2	52 179-990
G3/4	52 179-996

Изоляция

Для систем тепло- и холодоснабжения Исчерпывающую информацию о заводской изоляции смотрите в каталоге

Для DN	L	н	D	В	№ изделия
10, 15, 20	155	135	90	103	52 189-615
25	175	142	94	103	52 189-625
32	195	156	106	103	52 189-632
40	214	169	108	113	52 189-640
50	245	178	108	114	52 189-650

Ассортимент, тексты, фотографии, графики и диаграммы могут быть изменены компанией ТА Hydronics без предварительного уведомления и объяснения причин.