

Технический паспорт

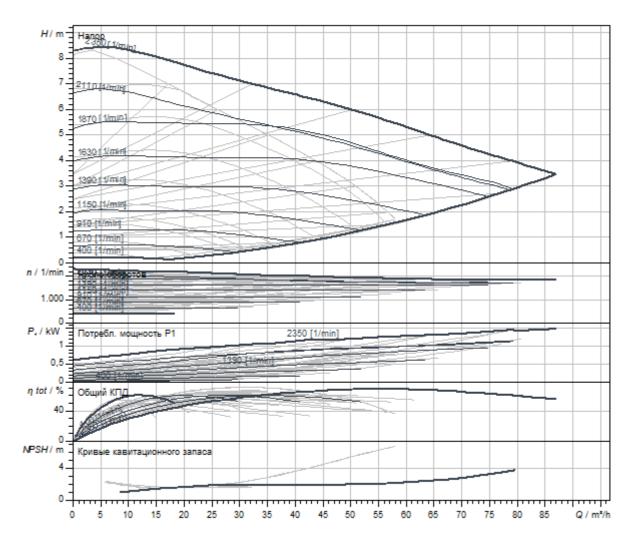
Гидравлические характеристики

	•
Индекс энергоэффективности (EEI)	0.18
Максимальное рабочее давление <i>PN</i>	10 бар
Напор <i>Н</i> _{max}	0,0 м
Расход Q _{max hr}	58,0 м³/ч
Расход Q _{max add}	87,0 м³/ч
Мин. изб. давление на входе в насос 50 °C	7 м
Мин. изб. давление на входе в насос 95 °C	15 м
Мин. изб. давление на входе в насос 110 °C	23 м
T перекачиваемой жидкости T_{\min}	-10 °C
Макс. Т перекачиваемой жидкости $T_{\rm max}$	90 °C
Температура окружающей среды мин. T_{\min}	-10 °C
Макс. температура окружающей среды T_{\max}	40 °C

Данные электродвигателя

Подключение к сети	1~230 V ±10%, 50/60 Hz
Номинальный ток I_{N}	0,3 A
Номинальный ток I_{N}	3,71 A
Частота вращения мин. n_{\min}	500 1/min
Частота вращения макс. $n_{\rm max}$	2350 1/min
Потребляемая мощность (мин.) $P_{1 \mathrm{min}}$	20 Вт
Потребляемая мощность P_1 max	850 Вт
Создаваемые помехи	EN 61800- 3;2004+A1;2012/жилые зоны (С1)
Помехозащищенность	EN 61800- 3;2004+A1;2012/ промышленные зоны (C2)
Класс нагревостойкости изоляции	F
Класс защиты	IPX4D
Кабельный ввод	5 x M16x1.5

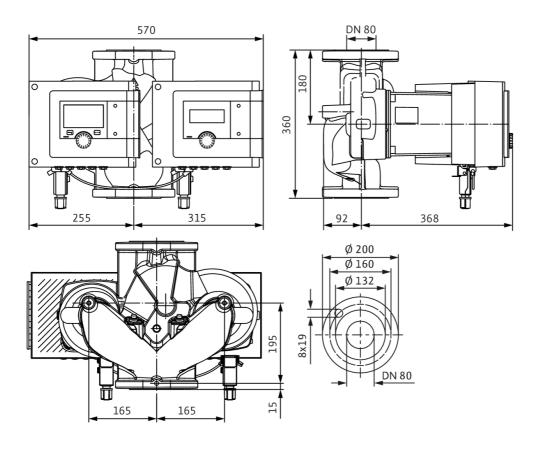
Материалы


Корпус насоса	Серый чугун
Рабочее колесо	PPS-GF40
Вал	Нержавеющая сталь
Материал подшипника	Графит, пропитанный сурьмой

Установочные размеры

Патрубок на напорн. стороне DNd	DN 80
Патрубок на всас. стороне DNs	DN 80
Монтажная длина <i>10</i>	360 мм

Характеристики



Перекачиваемая жидкость	Water 100 %
T перекачиваемой жидкости <i>T</i>	20,00 °C
Частота вращения в рабочей точке	1.952 1/min

Размеры и габаритные чертежи

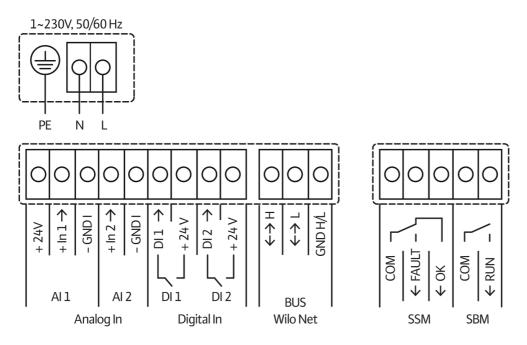

Stratos MAXO-D 80/0,5-6 PN10-R7

Схема подключения

Стандартное исполнение: 1~ 230 В, 50/60 Гц, опция: 3~ 230 В, 50/60 Гц

SSM: обобщенная сигнализация неисправности (нормально замкнутый контакт согласно VDI 3814, нагрузочная способность 1 A, 250 B \sim)

Описание изделия

Умный насос Premium Wilo-Stratos MAXO-D-R7 (R7 = без внутреннего датчика температуры)

Высокоэффективный линейный сдвоенный насос с мокрым ротором, электронно-коммутируемым двигателем и электронной регулировкой мощности. Может использоваться для воды систем отопления, холодной воды и водно-гликолевых смесей. Индекс энергоэффективности (EEI) от ≤ 0,17 до ≤ 0,19 в зависимости от типа насоса.

Способы регулирования:

- > постоянная автоматическая регулировка мощности в соответствии с требованиями установки без настройки заданного значения Wilo-Dynamic Adapt plus (заводская установка). Экономия электроэнергии до 20 % по сравнению со способом регулирования dp-v.
- > Постоянная температура (T-const.)
- > Постоянный перепад температур (dT-const.)
- При необходимости оптимизация расхода подающего насоса за счет объединения в сеть и связи с несколькими насосами (Multi-Flow Adaptation).
- > Постоянный расход (Q-const.)
- Регулирование перепада давления dp-с в удаленной точке трубопроводной сети (регулирование критической точки)
- > Постоянный перепад давления (dp-c)
- > Переменный перепад давления (dp-v) с возможностью ввода номинальной рабочей точки
- > Постоянная частота вращения (n-const.)
- > Определенный пользователем ПИД-регулятор

Функции:

- > Учет количества теплоты (возможно с такими принадлежностями, как датчик температуры перекачиваемой жидкости Wilo или аналоговые датчики температуры, например 2 датчика PT1000)
- > Учет количества холода (возможно с такими принадлежностями, как датчик температуры перекачиваемой жидкости Wilo или аналоговые датчики температуры, например 2 датчика PT1000)
- Автоматическое отключение насоса при обнаружении отсутствия расхода (No-Flow Stop)
- > Переключение между режимами отопления и охлаждения (автоматическое, внешнее или ручное) (автоматическое возможно с такими принадлежностями, как датчик температуры перекачиваемой жидкости Wilo)
- Регулируемое ограничение расхода через функцию Q-Limit (Q_{min.} и Q_{max.})
- > Режимы работы сдвоенных насосов: режим совместной работы двух насосов с оптимизацией по КПД для dp-с и dp-v, режим работы «Основной/резервный»
- > Сохранение и восстановление заданных настроек насоса (3 точки восстановления)
- Отображение сообщения о неисправности/ предупреждающего сообщения в виде простого текста, включая рекомендации по устранению неисправности
- > Функция автоматического удаления воздуха из полости ротора насоса
- > Автоматическая работа с понижением (возможно с такими принадлежностями, как датчик температуры перекачиваемой жидкости Wilo или аналоговые датчики температуры, например PT1000)
- Автоматическая функция деблокирования и встроенная полная защита электродвигателя
- > Распознавание сухого хода

Индикация:

- > способ регулирования
- > Задан. знач.
- > Расход
- > Температура (возможно с такими принадлежностями, как датчик температуры перекачиваемой жидкости Wilo)
- > Потребляемая мощность
- > Потребление электроэнергии
- > Активные воздействия (например, STOP, No-Flow Stop)

Исполнение:

- > 2 настраиваемых аналоговых входа: 0 10 В, 2 10 В, 0 – 20 мА, 4 – 20 мА и стандартный РТ1000; источник питания с +24 В пост. тока
- > 2 настраиваемых цифровых входа (Ext. Off, Ext. Min, Ext. Max, нагрев/охлаждение, ручная перерегулировка (автоматизированная система управления зданием отсоединена), блокировка управления (блокировка клавиш и защита конфигурации дистанционного управления))
- 2 настраиваемых сигнальных реле для сигнализации рабочего состояния и неисправности
- > Разъем для модулей Wilo CIF с интерфейсами для автоматизированной системы управления зданием (опциональные принадлежности: модули CIF Modbus RTU, Modbus TCP, BACnet MS/TP, BACnet IP, LON, PLR, CANopen)
- > Wilo Net системная шина Wilo для связи между изделиями Wilo, например **Multi-Flow Adaptation**; режим сдвоенного насоса и Wilo-Smart Gateway
- Автоматический аварийный режим при особых состояниях (задаваемая частота вращения насоса), например в случае сбоя обмена данными по шине или показаний датчика
- > Графический цветной дисплей (4,3 дюйма) с управлением через панель управления одной кнопкой
- Чтение и настройка эксплуатационных параметров, а также, например, создание протокола ввода в эксплуатацию через интерфейс Bluetooth (без дополнительных принадлежностей) с помощью Wilo-Assistant App
- Встроенное управление сдвоенными насосами (сдвоенные насосы с готовой кабельной разводкой), при применении 2 одинарных насосов в качестве сдвоенного насоса, подсоединение через сеть Wilo Net
- Функция обнаружения повреждения кабеля при аналоговом сигнале (в сочетании с 2 – 10 В или 4 – 20 мА)
- Возможен наружный монтаж с защитой от атмосферных воздействий в соответствии с инструкцией по монтажу и эксплуатации
- > Дата и время предварительно настроены

Комплект поставки

- > Hacoc
- > 2 оптимизированных разъема Wilo-Connector, одинаковых для всех типоразмеров
- > 4 кабельных ввода M16 × 1,5
- > 2 уплотнения
- > Инструкция по монтажу и эксплуатации

Принадлежности в качестве опции:

- > Модуль CIF: Modbus TCP, Modbus RTU, BACnet IP, BACnet MS/TP, LON, PLR, CANopen
- > PT 1000 (B) трубный датчик (для горячего водоснабжения)
- > PT 1000 (AA) датчик для установки в погружной гильзе
- > Дифференциальный датчик давления
- > Smart-Gateway
- > Датчик температуры перекачиваемой жидкости Wilo (возможность дооснащения для регистрации и индикации температуры перекачиваемой жидкости, измерения количества тепла и холода, а также использование температурно-зависимых способов регулирования T-const., dT-const.)

Эксплуатационные параметры

Т перекачиваемой жидкости <i>Т</i>	-10 °C
Температура окружающей среды T	-10 °C
Максимальное рабочее давление <i>PN</i>	10 бар
Мин. изб. давление на входе в насос 50°C	7 м

Эксплуатационные параметры

Мин. изб. давление на входе в насос 95 °C	15 м	
Мин. изб. давление на входе в насос 110 °C	23 м	

Данные электродвигателя

Индекс энергоэффективности (EEI)	0.18
Создаваемые помехи	EN 61800- 3;2004+A1;2012/жилые зоны (С1)
Помехозащищенность	EN 61800- 3;2004+A1;2012/ промышленные зоны (C2)
Подключение к сети	1~230 V, 50/60 Hz
Потребляемая мощность P_1 max	850 Вт
Частота вращения мин. n_{\min}	500 1/min
Частота вращения макс. n _{max}	2350 1/min
Класс защиты электродвигателя	IPX4D
Кабельный ввод	5 x M16x1.5

Материалы

Корпус насоса	Серый чугун
Рабочее колесо	PPS-GF40
Вал	Нержавеющая сталь
Материал подшипника	Графит, пропитанный сурьмой

Установочные размеры

Патрубок на всас. стороне DNs	DN 80
Патрубок на напорн. стороне DNd	DN 80
Монтажная длина <i>10</i>	360 мм

Информация о размещении заказа

Изделие	Wilo
Обозначение изделия	Stratos MAXO-D 80/0,5-6 PN10-R7
Масса нетто прибл. <i>m</i>	63 кг
Артикульный номер	2217987